Natufian Foragers in the Levant

Terminal Pleistocene Social Changes in Western Asia

edited by

Ofer Bar-Yosef
&
François R. Valla

International Monographs in Prehistory
Archaeological Series 19
Table of Contents

List of Contributors ... vii

Preface – The Natufian Culture in the Levant: Twenty Years Later
Ofer Bar-Yosef and François R. Valla .. xv

Acknowledgements .. xix

Northern Levant

Natufian Lifeways in the Eastern Foothills of the Anti-Lebanon Mountains
Nicholas J. Conard, Knut Bretzke, Katleen Deckers, Andrew W. Kandel, Mohamed Masri, Hannes Napierala, Simone Riehl and Mareike Stahlschmidt ... 1

The Natufian of Moghr el-Ahwal in the Qadisha Valley, Northern Lebanon
Andrew Garrard and Corine Yazbeck .. 17

The Natufian of Southwestern Syria Sites in the Damascus Province
Kurt Felix Hillgruber ... 28

The Natufian Occupations of Qarassa 3 (Sweida, Southern Syria)
Xavier Terradas, Juan José Ibáñez, Franck Braemer, Lionel Gourichon and Luis C. Teira 45

The Early Natufian Site of Jeftelik (Homs Gap, Syria)
Amelia del Carmen Rodríguez Rodríguez, Maya Haïdar-Boustani, Jesús E. González Urquijo, Juan José Ibáñez, Michel Al-Maqdissi, Xavier Terradas and Lydia Zapata ... 61

Fish in the Desert? The Younger Dryas and its Influence on the Paleoenvironment at Baaz Rockshelter, Syria
Hannes Napierala .. 73

Preliminary Results from Analyses of Charred Plant Remains from a Burnt Natufian Building at Dederiyeh Cave in Northwest Syria
Ken-ichi Tanno, George Willcox, Sultan Muhesen, Yoshihiro Nishiaki, Yousef Kanjo and Takeru Akazawa ... 83

Southern Levant

El-Wad

Spatial Organization of Natufian el-Wad through Time: Combining the Results of Past and Present Excavations
Mina Weinstein-Evron, Daniel Kaufman and Reuven Yeshurun .. 88
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Last Natufian Inhabitants of el-Wad Terrace</td>
<td>Noga Bachrach, Israel Hershkovitz, Daniel Kaufman and Mina Weinstein-Evron</td>
<td>107</td>
</tr>
<tr>
<td>Domestic Refuse Maintenance in the Natufian: Faunal Evidence from el-Wad Terrace, Mount Carmel</td>
<td>Reuven Yeshurun, Guy Bar-Oz, Daniel Kaufman and Mina Weinstein-Evron</td>
<td>118</td>
</tr>
<tr>
<td>Natufian Green Stone Pendants from el-Wad: Characteristics and Cultural Implications</td>
<td>Daniella E. Bar-Yosef Mayer, Naomi Porat and Mina Weinstein-Evron</td>
<td>139</td>
</tr>
</tbody>
</table>

Eynan

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Final Natufian Structure 215-228 at Mallaha (Eynan), Israel: an Attempt at Spatial Analysis</td>
<td>François R. Valla, Hamoudi Khalaily, Nicolas Samuelian, Anne Bridault, Rivka Rabinovich, Tal Simmons, Gaëlle Le Dosseur and Shoshana Ashkenazi</td>
<td>146</td>
</tr>
<tr>
<td>A Study of two Natufian Residential Complexes: Structures 200 and 203 at Eynan (Ain Mallaha), Israel</td>
<td>Nicolas Samuelian</td>
<td>172</td>
</tr>
<tr>
<td>Graves in Context: Field Anthropology and the Investigation of Interstratified Floors and Burials</td>
<td>Fanny Bocquentin, Teresa Cabellos and Nicolas Samuelian</td>
<td>185</td>
</tr>
<tr>
<td>Obsidian in Natufian Context: the Case of Eynan (Ain Mallaha), Israel</td>
<td>Hamoudi Khalaily and François R. Valla</td>
<td>193</td>
</tr>
<tr>
<td>Flint Knapping and its Objectives in the Early Natufian. The Example of Eynan- Ain Mallaha (Israel)</td>
<td>Boris Valentin, François R. Valla and Hugues Plisson with the collaboration of Fanny Bocquentin</td>
<td>203</td>
</tr>
<tr>
<td>Searching for the Functions of Fire Structures in Eynan (Mallaha) and their Formation Processes: a Geochemical Approach</td>
<td>Ramiro J. March</td>
<td>227</td>
</tr>
<tr>
<td>Avifauna of the Final Natufian of Eynan</td>
<td>Tal Simmons</td>
<td>284</td>
</tr>
<tr>
<td>Bone Ornamental Elements and Decorated Objects of the Natufian from Mallaha</td>
<td>Gaëlle Le Dosseur and Claudine Maréchal</td>
<td>293</td>
</tr>
<tr>
<td>Reconstruction of the Habitats in the Ecosystem of the Final Natufian Site of Ain Mallaha (Eynan)</td>
<td>Shoshana Ashkenazi</td>
<td>312</td>
</tr>
</tbody>
</table>
Southern Levant - other sites

Wadi Hammeh 27: an open-air ‘base-camp’ on the Fringe of the Natufian ‘homeland’
Phillip C. Edwards, Fanny Boquentin, Sue Colledge, Yvonne Edwards, Gaëlle Le Dosseur, Louise Martin, Zvonkica Stanin and John Webb ..319

Art Items from Wadi Hammeh 27
Janine Major ..349

The Final Epipaleolithic / PPNA site of Huzuq Musa (Jordan Valley)
Dani Nadel and Danny Rosenberg ...382

Natufian Settlement in the Wadi al-Qusayr, West-Central Jordan
Michael Neeley ..397

The Steppic Early Natufian: Investigations in the Wadi al-Hasa, Jordan
Deborah I. Olszewski ..412

The Natufian of the Azraq Basin: An Appraisal
Tobias Richter and Lisa A. Maher ..429

Chert Procurement Patterns And Exploitation Territory: Case Study From Late Natufian
Hayonim Terrace (Western Galilee, Israel)
Christophe Delage ...449

A Faunal Perspective on the Relationship between the Natufian Occupations of Hayonim
Cave and Hayonim Terrace
Natalie D. Munro ...463

The Natufian at Raqefet Cave
György Lengyel, Dani Nadel and Fanny Boquentin ..478

Hof Shahaf: A New Natufian Site on the Shore of Lake Kinneret
Ofer Marder, Reuven Yeshurun, Howard Smithline, Oren Ackermann, Daniella
E. Bar-Yosef Mayer, Anna Belfer-Cohen, Leore Grosman, Israel Hershkovitz, Noa
Klein and Lior Weissbrod ...505

The Life History of Macrolithic Tools at Hilazon Tachtit Cave
Laure Dubreuil and Leore Grosman ..527

General Reviews, Climate and Interpretations

Breaking the Mould: Phases and Facies in the Natufian of the Mediterranean Zone
Anna Belfer-Cohen and A. Nigel Goring-Morris ...544

Ruminations on the Role of Periphery and Center in the Natufian
A. Nigel Goring-Morris and Anna Belfer-Cohen ...562
The Natufian and the Younger Dryas
Donald O. Henry ..584

Scaphopod Shells in the Natufian Culture
Aldona Kurzawska, Daniella E. Bar-Yosef Mayer and Henk K. Mienis611

The Natufian Chronological Scheme – New Insights and their Implications
Leore Grosman ..622

Natufian Foragers and the ‘Monocot Revolution’: A Phytolith Perspective
Arlene M. Rosen ...638

Lithic Technology in the Late Natufian – Technological Differences between ‘Core-area’ and ‘Periphery’
Hila Ashkenazy ...649

Variability of Lunates and Changes in Projectile Weapons Technology during the Natufian
Alla Yaroshevich, Daniel Kaufman, Dmitri Nuzhnyy, Ofer Bar-Yosef and Mina Weinstein-Evron...671

Specialized Hunting of Gazelle in the Natufian: Cultural Cause or Climatic Effect?
Guy Bar-Oz, Reuven Yeshurun and Mina Weinstein-Evron.......................................685

Commensalism: was it Truly a Natufian Phenomenon? Recent Contributions from Ethnoarchaeology and Ecology
Lior Weissbrod, Daniel Kaufman, Dani Nadel, Reuven Yeshurun and Mina Weinstein-Evron...699
Preliminary Results from Analyses of Charred Plant Remains from a Burnt Natufian Building at Dederiyeh Cave in Northwest Syria

Ken-ichi Tanno, George Willcox, Sultan Muhesen, Yoshihiro Nishiaki, Yousef Kanjo and Takeru Akazawa

Introduction

Dederiyeh is a cave site situated 13 km south of Afrin, and about 65 km from the present-day Mediterranean coast in northwest Syria (Fig. 1). It has been excavated by a joint Japanese and Syrian team led by Takeru Akazawa and Yousef Kanjo. The cave deposits consist of Lower and Middle Palaeolithic layers, above which part of a Natufian layer survives (Akazawa and Muhesen 2002; Akazawa et al. 2009; Nishiaki et al. 2011). It is one of the most northern Natufian sites in the Near East (Nishiaki et al. in press) lying in Mediterranean vegetation zone where the average annual rainfall is approximately 600 mm per year. Today's vegetation in the area of Dederiyeh is a degraded Mediterranean forest with sparse evergreen oak (Quercus calliprinos), rarely deciduous oaks and wild cereals such as emmer and barely.

The site is still under excavation. At least five Natufian structures were found in the entrance to the cave. Building 1 had burnt destruction levels caused by a fire that partially destroyed the building (Nishiaki et al. in press). The fire probably took place while the building was still in use with many of its contents in place, which explains the exceptionally rich charred plant remains. Several 14C dates from the burnt levels indicate that the fire took place between 12,950 and 13,180 calBP (Yoneda et al. 2006). This building measures approximately 2.5 x 5 m making a half circle with a stone wall towards the rear. Postholes were located along the wall and at the front of the building. Charred timbers were scattered across the floor.

Sampling of building 1 was carried out in 2005 and 2007. In 2005 sediment from the fill of the building was sampled. Then in 2007 sediment corresponding to the floor levels was systematically sampled from forty 50 x 50 cm squares, which allowed a spatial analysis of the charred finds within the building to be carried out. Sediment samples were subjected to flotation using 1.0 mm and 0.5 mm mesh sieves during the 2005 season and in 2007 a 0.34 mm mesh sieve was added. The position of charred beams representing construction material from the building was recorded. Large fragments of charcoal were picked out by hand.

Results

The study of the charred remains is ongoing; this short report presents only preliminary results (Table 1). In 2007 a total of 11.5 liters of charred plant remains were recovered from 623 liters of sediment. 57 charred beams fragments were sampled. Similar volumes were collected in 2005. This quantity of charred remains is exceptional for Natufian
Table 1. Results of preliminary analyses giving absolute counts of taxa identified. Note the small volume of charred remains analyzed compared to the total recovered.

<table>
<thead>
<tr>
<th>Year of excavation</th>
<th>2005 (fill)</th>
<th>2007 (floor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of sediment sampled (l)</td>
<td>297.5</td>
<td>623</td>
</tr>
<tr>
<td>Volume of charred remains recovered (l)</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Volume of charred remains analysed (ml)</td>
<td>89</td>
<td>360</td>
</tr>
</tbody>
</table>

Cereals
- *Triticum boeoticum/dicocoides* (Einkorn/Emmer) | 53 | 120 |
- *Triticum* spikelet base | 0 | 2 |
- *Hordeum spontaneum* (Wild barley) | 2 | 8 |

Grasses
- *Hordeum* sp. | 3 | 0 |
- *Stipa* sp. (Fearher grass) | 128 | 152 |
- Gramineae (Grasses) | 18 | 12 |

Pulses
- *Lens* sp. (Lentil) | 8 | 11 |
- *Pisum* sp. (Pea) | 2 | 3 (1cf.) |
- *Vicia ervilia* (Bitter vetch) | 1 | 1 |
- *Vicia* sp. (Vetch) | 2 | 2 |
- *Lathyrus* sp. (Grass pea) | 1 | 2 (2cf.) |

Fruits
- *Pistacia* sp. (Oriental terebinth) | 4268 | 5426 |
- *Amygdalus* sp. (Almond) | 203 | 1177 |
- *Celtis* sp. (Hackberry) | 30 | 72 |
- *Crataegus* sp. (Hawthorn) | 0 | 2 (1cf.) |
- *Ficus* sp. (Fig) | 0 | 1cf. |

Wild/weed taxa
- *Adonis* sp. (Pheasants eye) | 0 | 1 |
- Apiaceae (Umbliferous) | 0 | 11 |
- *Brassica* sp. (Cabbage family) | 1 | 1 |
- *Bupleurum* sp. | 1 | 4 (2cf.) |
- Caryophyllaceae/Malvaceae | 0 | 1 |
- *Centaurea* sp. | 0 | 1 |
- Chenopodiaceae | 0 | 2 |
- Compositae | 0 | 2 |
- *Hyoscyamus* sp. | 0 | 1cf. |
- Labiatae | 0 | 8 |
- Leguminosae | 7 | 16 |
- *Onobrychis* type | 16 | 13 (4cf.) |
- *Onopordum* sp. | 1 | 2 |
- Papaveraceae | 13 | 6 |
- *Silene* sp. | 0 | 1 |
- *Trigonella/Trifoliae* | 0 | 2 |
- *Ziziphora* sp. | 164 | 327 |

indet. Large Pulse | 0 | 3 |
indet | 26 | 34 |
Charred rodent faecies | 4 | 212 |
sites. Over 12,000 items of carbonized seeds were identified from only 450 ml charred remains out of a total, which exceeds 12 liters. This shows that the final analysis will probably include more than 100,000 items.

Founder taxa

Charred grains of wild cereals were common. The most frequent was hulled wheat. Many specimens were morphologically close to wild single-grained einkorn with a convex ventral face. However two-grained einkorn was also present. These grains had a flat ventral face. Other grains were much wider and may represent small emmer grains some of which could have come from spikelets with one grain. The wild wheats are not easy to identify and future work will clarify these preliminary identifications. Wild barley was present but only ten grains were recorded. Pulses lentils, pea and bitter vetch were found at Dederiyeh. They occur at frequencies similar to those found on PPNA sites but less frequent compared to finds at early PPNB sites such as Nevali Çori, Dja‘de and Tell el-Kerkh (Willcox et al. 2009) when they are almost as frequent as cereals.

Fruit taxa

The most common charred remains are represented by nutshells of *Pistacia atlantica*/*palaestina* with 9694 fragments, which were scattered throughout the building. In Syria these taxa are represented by two species (oriental terebinth and/or turpentine tree), which are difficult to separate when only fragments of endocarp are present. Finds of these endocarp fragments are common on late Pleistocene/early Holocene sites in the Near East that have been sampled by flotation. The fruits have many different uses and they are still gathered today in many areas indicating continuity in the use of these fruits. Almond shells were also very common with 1380 fragments identified. At present it is not known which species was present. These taxa were also very common in Khiamian levels at the site of Tell Qaramel (Willcox et al. 2008). Another fruit that was identified at Dederiyeh was hackberry (*Celtis* sp.). The whole endocarps were quite common as indeed they were at Tell Qaramel. Two hawthorn endocarps were recovered and a possible fig seed. The later needs to be confirmed by future analyses.

Charcoal analyses

Charcoal analysis of samples taken from the beams and the postholes revealed that deciduous *Quercus* (oak) and *Ulmus* (elm) were the most common species used. *Pistacia*, *Acer* (maple), *Amygdalus* (almond) and *Fraxinus* (ash) were also present. Elm and ash may have grown along the nearby river; the other species would have been part of the local vegetation growing on the surrounding hills. The presence of deciduous oak at this time is in concordance with data from other areas of the Mediterranean where evergreen oak was rare having retreated into refugia during the Last Glacial Maximum and did not expand until the beginning of the Holocene well after the Natufian occupation at Dederiyeh.

Discussion and conclusion

The plant economy during the Natufian period is poorly documented with the exception of information provided by analyses at Abu Hureyra (Hillman 2000). This period is considered as the prelude to the shift from foraging to cultivation. The archaeobotanical results obtained from the building partly destroyed by fire found in Dederiyeh cave in northwest Syria offer an exceptional opportunity to get a better understanding of this crucial period. It allows us for the first time to compare the plant economy from two contemporary Natufian sites from different geographical areas. The plant remains from Dederiyeh are remarkably well pre-
served thanks to the cave environment and offer the possibility of examining the plant economy at a new Natufian site, which corresponds in date to the early levels from Abu Hureyra 1 and coincides with the beginning of the Younger Dryas.

Hillman posited the possibility of cultivation (Hillman 2000) for Natufian Abu Hureyra situated on the Euphrates where he also reports on a few plump “domestic” type rye grains (Hillman et al. 2001). However the reliability of these interpretations based on plant material from Abu Hureyra has been questioned and should be treated with caution (Colledge and Conoly 2010). In Table 2 we compare the number of identifications of a selection of food plants found at Dederiyeh and Abu Hureyra. Most striking is the high levels of Rumex/Polygonum at Abu Hureyra and their absence at Dederiyeh. Of the cereals barley is absent at Abu Hureyra where rye played an important role; whereas at Dederiyeh hulled wheats dominate. The marked difference between the two sites, and indeed the finds from Mureybet (Willcox 2008), is due to the different climatic conditions which gives rise to a very different vegetation and hence the available plants (Willcox 2005). Indeed the assemblage from Dederiyeh is similar to that of early Holocene Tell Qaramel (Willcox et al. 2008) situated about 40 km to the east in essentially the same vegetation zone. Abu Hureyra and Mureybet are situated about 150 km to the east in a much more arid zone consisting of steppe vegetation. Founder crops are rare at Abu Hureyra whereas at Dederiyeh they dominate the assemblage if we discount Pistacia.

Table 2. Comparison of a selection of food plants from Dederiyeh and Abu Hureyra giving absolute counts from each site (* predominantly rye)

<table>
<thead>
<tr>
<th></th>
<th>Abu Hureyra</th>
<th>Dederiyeh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticum/Secale grain</td>
<td>888</td>
<td>0</td>
</tr>
<tr>
<td>Triticum spikelet base</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>H. spontaneum</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Emmer/Einkorn</td>
<td>0</td>
<td>173</td>
</tr>
<tr>
<td>Lens sp</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>Pisum/Vicia/Lathyurus</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>Vicia ervilia</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stipa</td>
<td>1573</td>
<td>280</td>
</tr>
<tr>
<td>Panicoid grasses</td>
<td>342</td>
<td>0</td>
</tr>
<tr>
<td>Rumex/Polygonum</td>
<td>4848</td>
<td>0</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Amygdalus spp</td>
<td>0</td>
<td>1380</td>
</tr>
<tr>
<td>Pistacia sp frags</td>
<td>357</td>
<td>9694</td>
</tr>
<tr>
<td>Charred rodent faecies</td>
<td>0</td>
<td>216</td>
</tr>
<tr>
<td>Volume of sediment (liters)</td>
<td>7925</td>
<td>11.5</td>
</tr>
</tbody>
</table>
References Cited

